References
Cetinkaya-Rundel, M., & Hardin, J. (2021). Introduction to
Modern Statistics. https://openintro-ims.netlify.app/
Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020).
Mathematics for machine learning. Cambridge University Press.
https://mml-book.github.io/
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Goodman, S. (2008). A Dirty Dozen: Twelve P-Value
Misconceptions. Seminars in Hematology, 45(3),
135–140. https://doi.org/10.1053/j.seminhematol.2008.04.003
Hernán, M. A., Hsu, J., & Healy, B. (2019). A Second
Chance to Get Causal Inference Right: A
Classification of Data Science Tasks.
Chance, 32(1), 42–49. https://doi.org/10.1080/09332480.2019.1579578
Ismay, C., & Kim, A. Y.-S. (2020). Statistical inference via
data science: A ModernDive into R and the
Tidyverse. CRC Press / Taylor & Francis Group. https://moderndive.com/
MacKay, R. J., & Oldford, R. W. (2000). Scientific
Method, Statistical Method and the
Speed of Light. Statistical Science,
15(3), 254–278. https://doi.org/10.1214/ss/1009212817
McElreath, R. (2020). Statistical rethinking: A
Bayesian course with examples in R and
Stan (2nd ed.). Taylor and Francis, CRC
Press.
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference
in statistics: A primer. Wiley.
Poldrack, R. (2022). Statistical Thinking for the 21st
Century. https://statsthinking21.github.io/statsthinking21-core-site/index.html
Roback, P., & Legler, J. (2021). Beyond multiple linear
regression: Applied generalized linear models and multilevel models
in (1st ed.). CRC Press.
Rohrer, J. M. (2018). Thinking Clearly About Correlations
and Causation: Graphical Causal Models for
Observational Data. Advances in Methods and Practices
in Psychological Science, 1(1), 27–42. https://doi.org/10.1177/2515245917745629
Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen,
aufbereiten, visualisieren und modellieren (1. Auflage 2019).
Springer. https://www.springer.com/de/book/9783658215866
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s
Statement on p-Values: Context,
Process, and Purpose. The American
Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Wickham, H., & Grolemund, G. (2016). R for Data
Science: Visualize, Model,
Transform, Tidy, and Import
Data. O’Reilly Media. https://r4ds.had.co.nz/index.html
Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in
empirical enquiry. International Statistical Review,
67(3), 223–248.